Deep Issues of the Python
ecosystem soon fixed through the

@Py project?

Pierre Augier

EEEEEEEEEEEEEEEEEEEEEEEEE
Grenoble Alpes EEEEEEEEEEEEEEEEEEEEEEEEE

Yet another presentation about
Python problems...

* “Python slow”
* Python ~= CPython
* Role of 3" party libraries and extensions

But first, some good news!

News and progresses...

* Usabillity for different applications
- Web frontend, WebAssembly, Pyodine, Pyscript
- Beeware
- Textual
e Packaging
- Pip, isolated build, Poetry, ...
- Conda-forge, Mamba, ...
- PyPy + Conda-forge

News performance

No GIL proof of concept
Python array API| standard
Pythran in Scipy and Scikit-image

—aster CPython project (microsoft, with Guido van Rossum)
- 3.11 (2022/10) x1.25 faster than 3.10

- 3.12 (2023/10) ?
- 3.13 (2024/10) ?
- 3.14 (2025/10) ?

Only pure Python code...

Target: x5 faster!

https://pyfound.blogspot.com/2022/05/the-2022-python-language-summit-python_11.html
https://data-apis.org/array-api/latest/index.html
https://devblogs.microsoft.com/python/python-311-faster-cpython-team/

About numerical Python problems...

* “Python slow”
* Python ~= CPython
* Role of 3" party libraries and extensions

Why?

Python slow ? Bad for CO, ?

* Actually, CPython slow (pure Python code and
extensions)

* Slow Iinterpreter != inefficient programs!
— Avoid the interpreter in hot loops (long calls native functions)
- Numpy with high level prog.
— Cython, Pythran, Numba, Numexpr...

* Other implementations (PyPy, GraalPy) much faster

@ Graal

Python slow ? Bad for CO, ?

16384 particles, 10 N-Body time units

ax10t{ ® E’lf:”” Taken from Augier et al.
Sratic AngUsges Reducing the ecological impact of
o e computing through education and
=, ¢ AOT compilation python CompilerS.
. Nature Astronomy, 2021
g
2 Benchmark of different
g implementations in different
languages.
Pythran & Julia
parallel
4 %1072 e © wres

T T ; . T p—r
1071 10°
Time to solution (day)

CPython slow

- Generalist interpreter

- Performance less important than simplicity of
Implementation and robustness

- Old internal design
* Garbage collector: reference counting
* No specialized objects (for example lists)
* No JIT

It is changing with the
Faster CPython project

CPython slow, conseguences

* Hard to write numerical code In pure Python

* Language not designed In this direction (lacks
“math arrays”, “arrays of objects”, ...)

* Needs things like N Y Numpy
(C extensions, using the CPython C API)

C APl and ABI

* API (Application Programming Interface)
Involves source code: content of headers,
function declarations, macros, structs, ...

* ABI (Application Binary Interface) involves
compiled code: function objects, struct memory
layout, etc.

CPython C AP

A huge success!
No proper design, evolve organically

Exposes (assumptions about) too many
Implementation details

A nightmare for alternative Python implementations
(supporting extensions requires mimicking the
internals of CPython)

Alternative Python implementations

o €

(fast, tracing JIT, tracing garbage collector)

MicroPython gk
GraalPy (Graal , Oracle Labs, Java, LLVM)
RustPython

Multiple projects failed...

No OOP for numerics

+ Libs of the numerical stack
no evolution of the language not designed taking into account

for numerical computing alternative Python implementations
(homogeneous arrays of objects)

+
schism OOP versus array comp.

Limitation
internal evolution Alternative Python implementations
'/ CPython little used for numerical computing
CPython slow CPython C API
(pure Python) exposes

internal detalls

Alternative Python implementations
very slow for code using extensions
High level array computing,
Numpy / array libs
(written in C, CPython C API)

Accelerators needed
\» Low level array comp. slow - Cython, Pythran, Numba

(Python / native border) - Reimplementations
- Move the border

No OOP for numerics

+ Libs of the numerical stack
no evolution of the language not designed taking into account

for numerical computing alternative Python implementations
(homogeneous arrays of objects)

+
schism OOP versus array comp.

Limitation
internal evolution Alternative Python implementations
'/ CPython little used for numerical computing
CPython slow CPython C API
(pure Python) exposes

internal detalls

Alternative Python implementations
very slow for code using extensions
High level array computing,
Numpy / array libs

(written in C,W) Accelerators needed
Acrazy 7 y \» Low level array comp. slow , - Cython, Pythran, Numba
solution! (Python / native border) - Reimplementations

- Move the border

@Py - A better C API for Python

Principles:

* Based on handles to represent references to Python objects

e Hides implementations details (no assumption)

* 1 API and different ABIs (CPython ABIs and 1 HPy Universal ABI)

Advantages:
» Zero overhead on CPython

Much faster on alternative implementations such as PyPy, GraalPython

Universal binaries: extensions built for the HPy Universal ABI can be loaded unmodified on CPython,
PyPy, GraalPython, etc. No need to rebuild for different versions (3.9, 3.10, ...)!

A migration path for mixing legacy C-API with HPy API

Debug mode: to identify common problems such as memory leaks, invalid lifetime of objects, invalid
usage of API, ... No need to rebuild!

Nicer API: smaller, simpler, more consistent

Scikit-image example

* Scikit-image written in Python and Cython
* Depends on Numpy, Matplotlib, ...

e Extensions

— C code produced via Cython and Pythran
- Using the CPython C APl and the Numpy C API

Scikit-image fully using HPy?

Numpy HPy porting

New Numpy HPy C API

Matplotlib HPy porting

Cython backend producing HPy code
Pythran backend producing HPy code

And a HPy universal wheel can be created!

HPy: current status in 20237
Probabillity of success?

4 years after the first commit, still in development (HPy 0.0.4, alpha testing)
Actively developed (by PyPy, GraalPy and Numpy core devs)

Milestone “ABI version 1” soon reached!
ABI version 1

No due date 76% complete

This is an umbrella for issues we think need to be resolved before entering the "ABI v1" stage - the point at which we
wouldn't feel uncomfortable if people started porting to HPy or we proposed to upstream our ports in earnest. At this
point, we consider HPy stable and complete enough to actually keep our promise of binary forward compatibility. That
does not mean the abi cannot evolve, but that we feel comfortable that the ABI v1 we release at this point can be
supported for many years

Few packages ported (Matplotlib!)

Numpy port in progress but no more big technical uncertainties!

My guess: end users may be able to get the
first benefices of HPy in few months

No OOP for numerics

+ Libs of the numerical stack
no evolution of the language not designed taking into account

for numerical computing alternative Python implementations
(homogeneous arrays of objects)

+
schism OOP versus array comp.

Limitation
internal evolution Alternative Python implementations
'/ CPython little used for numerical computing
CPython slow CPython C API
(pure Python) exposes

internal detalls

Alternative Python implementations
very slow for code using extensions
High level array computing,
Numpy / array libs

(written in C,-GRythenr-G-AR}

HPv C Accelerators needed
A crazy /V y \» Low level array comp. slow - Cython, Pythran, Numba

- API Python / native border - Reimplementations
solution! Py) - Move the border

-Ne- OOP for numerics
+
-re-evolution of the language 277
for numerical computing
(homogeneous arrays of objects)
+

schism OOP versus array comp.

More

internal evolution
'/ CPython

less slow
CPythonslew

(pure Python)

High level array computing,
Numpy / array libs

Libs of the numerical stack
+wet designed taking into account
alternative Python implementations

Alternative Python implementations
Jittle-used for numerical computing

Alternative Python implementations
very-stewfor code using extensions
quite efficient

(written in C,W) Accelerators needed
Acrazy 7 y \» Low level array comp. slow , - Cython, Pythran, Numba
solution! (Python / native border) - Reimplementations

- Move the border

Conclusions and perspectives
During the next years, we’ll see remarkable
performance improvements for Python
* Faster CPython project
* HPy

Conclusions and perspectives

About @Py

* Towards a multi iImplementations ecosystem
* Universal wheels great for users!
* HPy opens a lot of possibllities

 What about low level code using extensions?
- Python/Numpy accelerators still useful
- GraalPy very promising (JIT across language boundaries)...

https://hpyproject.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

