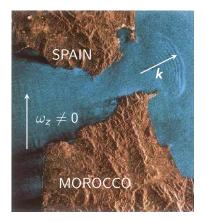
2D numerical simulations of stratified turbulence forced by internal waves

Miguel Calpe Linares, Nicolas Mordant, Pierre Augier

miguel.calpe-linares@univ-grenoble-alpes.fr

12th European Fluid Mechanics Conference (Vienna, Austria) Laboratoire des Écoulements Géophysiques et Industriels (LEGI, France) Université Grenoble Alpes - CNRS - Grenoble INP


10th September 2018

Oceans & Earth's climate system

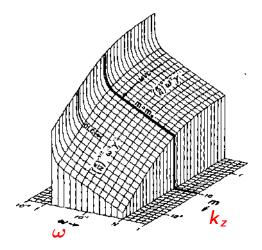
Oceans are turbulent & stratified

https://www.nasa.gov

https://www.esa.int

VORTICES

INTERNAL WAVES


Miguel Calpe Linares

2D Simulations stratified turbulence

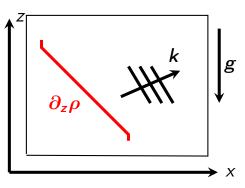
10th September 2018 2 / 16

Observations interpreted as non-linear waves!

Ocean turbulence: Garrett-Munk spectrum

Frequency-vertical wavenumber spectra. (Garrett and Munk, 1979)

Miguel Calpe Linares


2D Simulations stratified turbulence

10th September 2018 3 / 16

Reduction of dimensionality...

2D stratified turbulence

- No rotation effects
- No vertical vorticity
- <u>Wave modes</u> + shear modes

Spectra 2D stratified turbulence $\stackrel{?}{=}$ Spectra ocean observations

Fluidsim: an open source solver

Fluidsim¹

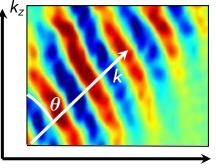
- Open source pseudo-spectral solver
- Language: Python/C++
- Reproductive science

Numerical parameters

- Periodic box: $L_x = 4L_z$
- Spatial resolution $n_x \times n_z$: 1920 × 480 (3840 × 960)
- Hyperviscosity ν_8
- No energy in shear modes: $E(k_x = 0, k_z) = 0$

¹https://bitbucket.org/fluiddyn/fluidsim

2D Navier-Stokes equations (Boussinesq approx.)

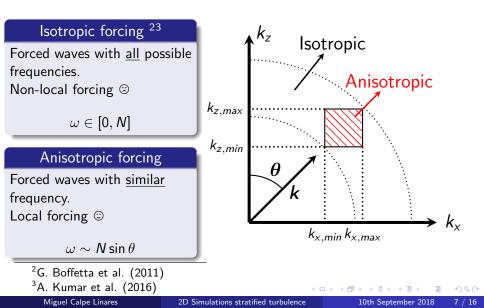

$$\begin{split} D_t \xi &= -\partial_x b + f_{\xi} + \nu_8 \boldsymbol{\nabla}^8 \xi \quad \text{(vorticity)} \\ D_t b &= N^2 u_z + f_b + \kappa_8 \boldsymbol{\nabla}^8 b \qquad \text{(buoyancy)} \end{split}$$

Linear dispersion relation:

$$\omega^2 = \mathit{N}^2 \sin^2 \theta$$

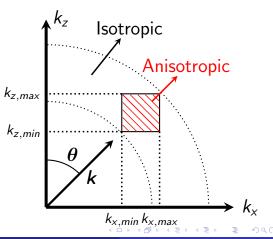
Linear eigenmodes:

$$\partial_t \hat{a}_{\pm} = \pm i \omega \hat{a}_{\pm}$$
 $\hat{a}_{\pm} = N^2 \hat{u}_z \pm i \omega \hat{b}$



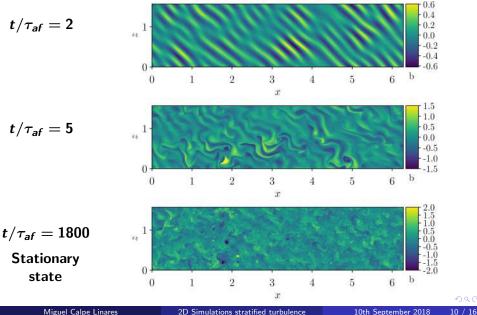
Background field courtesy of Lérisson, Chomaz and Ortiz (LadHyX, France)

 k_{x}


Isotropic Vs Anisotropic forcing

Our forcing is anisotropic!

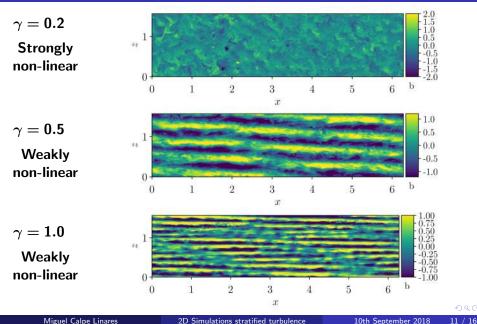
We force the linear mode \hat{a}_+ with an injection rate P_a


- Frequency forced waves $\omega_I = N \sin \theta_f$
- Amplitude forcing $\omega_{af} = (P_a \cdot k_f^2)^{1/7}$
- Time correlation forcing $\tau_{cf} = \pi/\omega_I \rightarrow \text{choice!}$

Non-dimensional parameters $F = \sin \theta$ $\gamma = \frac{\omega_l}{\omega_{af}}$ $Re = \frac{1}{\nu_8} \frac{\omega_{af}}{|\mathbf{k}_f|^8}$ (Geometry forcing)(Reynolds) $\gamma \rightarrow \mathbf{0}$: Weakly stratified + strongly non-linear $\gamma \rightarrow \infty$: Strongly stratified + weakly non-linear

γ	F
0.2	0.5
0.5	0.5
1.0	0.5

Buoyancy field $\gamma = 0.2$ (strongly non-linear)

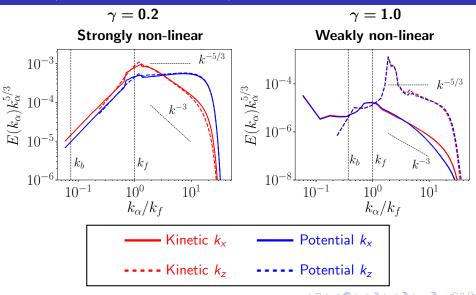


Miguel Calpe Linares

2D Simulations stratified turbulence

10th September 2018

Buoyancy fields at stationary state


Miguel Calpe Linares

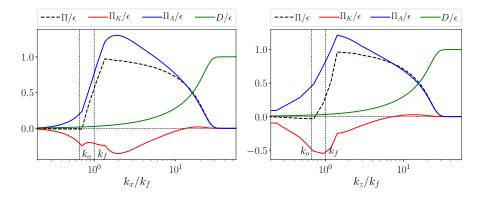
2D Simulations stratified turbulence

10th September 2018

Energy spectra

Compensated vertical and horizontal spectra

Miguel Calpe Linares


10th September 2018 12 / 16

Simulation $\gamma = 0.2$ (Strongly non-linear)

Horizontal and vertical spectral energy budget

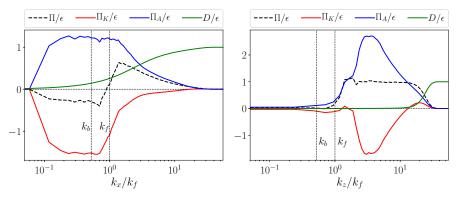
Horizontal budget

Vertical budget

G. Boffetta et al. (2011)

Miguel Calpe Linares

10th September 2018


13 / 16

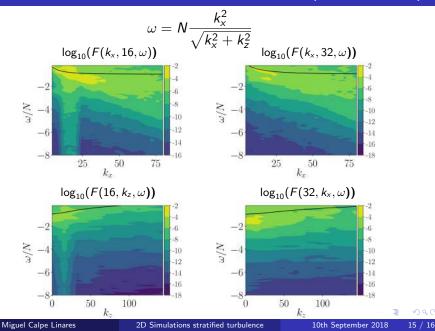
Simulation $\gamma = 1.0$ (Weakly non-linear)

Horizontal and vertical spectral energy budget

Horizontal budget

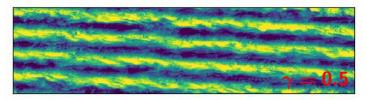
Vertical budget

• Loop mechanism⁵


It is not a wave cascade!

⁵G. Boffetta et al. (2011)

Miguel Calpe Linares


10th September 2018

Frequency-wavenumber spectra $\gamma = 1.0$ (in progress...)

Conclusions

Strongly non-linear: Not layered & Isotropic dynamics & Vortices **Weakly non-linear:** Layered & Anisotropic dynamics & Waves

Next steps...

- Dynamics consistent with oceanic phenomenology?
- Higher resolution simulations = oceanic conditions
- How layers scale with the buoyancy length scale $L_b = U/N$?
- Further analysis of the frequency-wavenumber spectra?

https://bitbucket.org/fluiddyn/fluidsim